Boosting classifiers for drifting concepts
نویسندگان
چکیده
This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams.
منابع مشابه
Ensemble Classification for Drifting Concept
Traditional data mining classifiers are used for mining the static data, in which incremental learning assumed data streams come under stationary distribution where data concepts remain unchanged. The concept of data can be changed at any time in real world application this refers to change in the class definitions over time. Classifier ensembles are rapidly gaining popularity in data mining Co...
متن کاملImproving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملSemi-supervised On-Line Boosting for Robust Tracking
Recently, on-line adaptation of binary classifiers for tracking have been investigated. On-line learning allows for simple classifiers since only the current view of the object from its surrounding background needs to be discriminiated. However, on-line adaption faces one key problem: Each update of the tracker may introduce an error which, finally, can lead to tracking failure (drifting). The ...
متن کاملSpeeding up Semi-supervised On-line Boosting for Tracking
Recently, object tracking by detection using adaptive on-line classifiers has been investigated. In this case, the tracking problem is reduced to the discrimination of the current object view from the local background. However, on-line learning may introduce errors, which causes drifting and let the tracker fail. This can be avoided by using semi-supervised on-line learning (i.e., the use of la...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intell. Data Anal.
دوره 11 شماره
صفحات -
تاریخ انتشار 2007